

Seat No.

HAJ-003-2013008

B. Sc. (Sem. III) (CBCS) (W.E.F. 2019) Examination May - 2023 Maths : Paper - 03 (A) (Linear Algebra & Real Analysis)

Faculty Code : 003 Subject Code : 2013008

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions:

- (1) All questions are compulsory.
- (2) Figures to the right indicate full marks of the question.
- 1 (a) Answer the following question :
 - (1) Find constants α and β which satisfy

 $(3, 5) = \alpha(1, 2) + \beta(2, 3).$

- (2) Define Subspace of a vector space.
- (3) Is the set $A = \{(1, 0, 1), (1, 1, 0), (-1, 0, -1)\}$ is linearly dependent? Verify.
- (4) Define Linearly Dependent Set of a vector space.
- (b) Answer the following question : (any **one**)
 - (1) Let $W = \{(x, y, 0) \mid x, y \in R\}$, is subset of R^3 then show that W is subspace of R^3 under vector addition and scalar multiplication.
 - (2) If $A = \{(1, -2, 5), (2, 1, -1), (3, -1, b)\}$, is Linearly Dependent subset of R^3 then find b.

(c) Answer the following question : (any **one**)

- (1) Prove that W_1 and W_2 are sub space of vector space *V* then $W_1 \cap W_2$ is also a vector space of *V*.
- (2) Check $(1, 2, 4) \in Sp A$, where $A = \{(0, 1, -1), (0, 0, 2), (1, 3, 0)\}.$
- (d) Answer the following question : (any **one**)
 - (1) Examine the subset $W = \{(a, b, c) / 2a + 5b c = 0\}$ is sub spaces of R^3 .
 - (2) Show that the set $V = \{(x, y) | x > 0, y > 0, x, y \in R\}$, is a vector space under usual vector addition and scalar multiplication.

HAJ-003-2013008]

[Contd...

4

2

3

5

2 Answer the following question : 4 (a) (1) Define Base of a vector space. (2) The standard base of $P_3(R)$ is (3) If $W = Sp \{(1, 1, 0), (0, 1, 1)\}$ then find dimW. (4) Let W_1 and W_2 be two sub spaces of a finite dimensional vector space V such that $V = W_1 + W_2$ then $\dim V =$ Answer the following question : (any one) 2 (b) If vector (m, 3, 1) is a linear combination of a = (3, 2, 1)(1)and b = (2, 1, 0) then m =_____ If $A = \{(2x - 4y + z, x + y, x - y, z) \mid x, y, z \in R\}$ then (2)find Sp A. Answer the following question : (any **one**) 3 (c) Prove that the set $A = \{(2, 3), (-1, 5)\}$ of \mathbb{R}^2 is a Base (1)of R^2 . (2) If $W_1 = \{x - y, y + z, y, z\}$ and $W_2 = \{x, x + y, x + y + z, y - z\}$ are sub spaces of \mathbb{R}^4 . Find dim W_1 , dim W_2 . (d) Answer the following question : (any **one**) 5 Show that the set $A = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ is (1)a basis of \mathbb{R}^3 . Find coordinate of vector (2, 1, -1) with respect to this base. (2) If W_1 and W_2 be two sub spaces of vector space V then $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$ 3 Answer the following question : 4 (a) (1) A vector function \overline{f} is an irrotational then . (2) If $\phi = x^2 y + y^2 z + z^2 x$ then find $\nabla^2 \phi =$ _____. (3) Define divergent of a vector function. (4) If $\overline{f} = (x^2, y^2, z^2)$ then find $div \overline{f}$ at point (1, 1, 1). Answer the following question : (any **one**) 2 (b)Find unit normal at the surface $x^2 + y^2 + z^2 = 6$ at (1)point (2, 1, 1). (2) If $\overline{f} = (x^3, y^3, z^3)$ then prove that grad $(div \overline{f}) = 6\overline{r}, \overline{r} = (x, y, z).$

HAJ-003-2013008]

[Contd...

- (c) Answer the following question : (any **one**)
 - (1) If $\overline{f} = (xy^2z, -x^3y^3, x^2yz^3)$ then find *curl* \overline{f} . Prove that $div(curl \ \overline{f}) = 0$.

(2) If
$$\overline{f} = (2x+3y+az)\hat{i} + (bx+2y+3z)\hat{j} + (2x+cy+3z)\hat{k}$$

is irrotational then find *a*, *b*, *c*.

Answer the following question : (any **one**) (1) Prove in usual notation $grad(\phi\psi) = \phi grad + \psi grad\phi$.

(2) Prove in usual notation
$$div(r^n\overline{r}) = (n+3)r^n$$
.

- (a) Answer the following questions : 4
 - (1) Define relation between Cartesian and Cylindrical coordinate.

(2) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then find $|J|$.

(3) Evaluate :
$$\int_{0}^{1} \int_{x}^{2x} x^2 y \, dy \, dx.$$

(4) Evaluate :
$$\int_{0}^{2} \int_{0}^{2} (x^2 + y^2) dx dy$$
.

(b) Answer the following question : (any **one**)

(1) Evaluate :
$$\iint_{0}^{1} e^{x+y} dx dy$$
.

(2) Evaluate :
$$\iint_{R} \left(x^2 + 2y \right) dx dy$$
, where region $R = [0:1, 0:2]$.

Answer the following question : (any **one**) (c)

> (1) Evaluate : $\iiint xydxdydz$, where curve R is a cube $0 \le x, y, z \le 1$.

(2) Evaluate :
$$\iint (x^2 + y^2) dy dx$$
 over the region bounded
by $x = 0, x = 1, y = 0, y = x$.

3

HAJ-003-2013008]

[Contd...

4

2

3

5

- (d) Answer the following question : (any **one**)
 - (1) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} f(x, y) \, dy \, dx.$
 - (2) Evaluate : $\iint_{R} (x^{2} + y^{2}) dx dy$, where *R* is bounded by lines y = x, y = -x, x y = 2, x + y = 2.

4

5

- (1) Define Gamma function.
- (2) State the relation between Beta and Gamma function.

(3)
$$\sqrt{\frac{1}{2}} =$$

(4) If the curve C is union of simple curves C_1, C_2 then

$$\int_C f \, dx = \underline{\qquad}$$

(b) Answer the following question : (any **one**)

(1) Find
$$\int_{(0,0)}^{(2,2)} y^2 dx$$
.

(2) Find $\int (xdy - ydx)$, from (0, 0) to (1, 1) over the straight line y = x.

(c) Answer the following question : (any **one**)

(1) Prove $\beta(m, n) = \beta(n, m)$.

(2) If
$$\overline{F} = (x^2 + y)\hat{i} + (2x + y)\hat{j}$$
, then find $\int_C \overline{F} \cdot dr$,

where C is line segment joining (2, 0) and (3, 2).

(d) Answer the following question : (any **one**)

5

(1) State and prove Green's Theorem.

(2) Prove that
$$\beta(m, n) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$$
.

HAJ-003-2013008]

2